--- title: "LikertMakeR" subtitle: "synthesise and correlate rating-scale data" author: Hume Winzar date: November 2024 version: 0.4.0 output: rmarkdown::html_vignette # output: rmarkdown::pdf_document vignette: > %\VignetteIndexEntry{LikertMakeR} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) knitr::knit_hooks$set(crop = knitr::hook_pdfcrop) library(LikertMakeR) ``` ```{r logo, fig.align='center', echo=FALSE, out.width = '25%'} knitr::include_graphics("LikertMakeR_3.png") ``` **_LikertMakeR_** synthesises and correlates Likert-scale and related rating-scale data. You decide the mean and standard deviation, and (optionally) the correlations among vectors, and the package will generate data with those same predefined properties. The package generates a column of values that simulate the same properties as a rating scale. If multiple columns are generated, then you can use **_LikertMakeR_** to rearrange the values so that the new variables are correlated exactly in accord with a user-predefined correlation matrix. Functions can be combined to generate synthetic rating-scale data from a predefined Cronbach's Alpha. ## Purpose The package should be useful for teaching in the Social Sciences, and for scholars who wish to "replicate" rating-scale data for further analysis and visualisation when only summary statistics have been reported. ## Motivation I was prompted to write the functions in _LikertMakeR_ after reviewing too many journal article submissions where authors presented questionnaire results with only means and standard deviations (often only the means), with no apparent understanding of scale distributions, and their impact on scale properties. Hopefully, this tool will help researchers, teachers & students, and other reviewers, to better think about rating-scale distributions, and the effects of variance, scale boundaries, and number of items in a scale. Researchers can also use _LikertMakeR_ to prepare analyses ahead of a formal survey. ## Rating scale properties A Likert scale is the mean, or sum, of several ordinal rating scales. Typically, they are bipolar (usually "agree-disagree") responses to propositions that are determined to be moderately-to-highly correlated and that capture some facet of a theoretical construct. Rating scales, such as Likert scales, are not continuous or unbounded. For example, a 5-point Likert scale that is constructed with, say, five items (questions) will have a summed range of between 5 (all rated '1') and 25 (all rated '5') with all integers in between, and the mean range will be '1' to '5' with intervals of 1/5=0.20. A 7-point Likert scale constructed from eight items will have a summed range between 8 (all rated '1') and 56 (all rated '7') with all integers in between, and the mean range will be '1' to '7' with intervals of 1/8=0.125. Rating-scale boundaries define minima and maxima for any scale values. If the mean is close to one boundary then data points will gather more closely to that boundary. If the mean is not in the middle of a scale, then the data will be always skewed, as shown in the following plots. ```{r skew, fig.align='center', echo=FALSE, out.width = '85%', fig.cap="Off-centre means always give skewed distribution in bounded rating scales"} knitr::include_graphics("skew_chart.png") ``` _____ ## _LikertMakeR_ functions * _lfast()_ generate a vector of values with predefined mean and standard deviation. * _lcor()_ takes a dataframe of rating-scale values and rearranges the values in each column so that the columns are correlated to match a predefined correlation matrix. * _makeCorrAlpha_ constructs a random correlation matrix of given dimensions from a predefined Cronbach's Alpha. * _makeItems()_ is a wrapper function for _lfast()_ and _lcor()_ to generate synthetic rating-scale data with predefined first and second moments and a predefined correlation matrix. * _makeItemsScale()_ generates a random dataframe of scale items based on a predefined summated scale with a desired Cronbach's Alpha. * _correlateScales()_ creates a dataframe of correlated summated scales as one might find in completed survey questionnaire and possibly used in a Structural Equation model. * Helper Functions - _alpha()_ calculates Cronbach's Alpha from a given correlation matrix or a given dataframe. - _eigenvalues()_ calculates eigenvalues of a correlation matrix, reports on positive-definite status of the matrix and, optionally, displays a scree plot to visualise the eigenvalues. _____ # Using _LikertMakeR_ ## Download and Install _LikertMakeR_ ### from _CRAN_ > ``` > > install.packages("LikertMakeR") > library(LikertMakeR) > > ``` ### development version from _GitHub_. > ``` > > library(devtools) > install_github("WinzarH/LikertMakeR") > library(LikertMakeR) > > ``` ____ ## Generate synthetic rating-scale data ### _lfast()_ - **_lfast()_** applies a simple evolutionary algorithm which draws repeated random samples from a scaled *Beta* distribution. It produces a vector of values with mean and standard deviation typically correct to two decimal places. To synthesise a rating scale with **_lfast()_**, the user must input the following parameters: - **_n_**: sample size - **_mean_**: desired mean - **_sd_**: desired standard deviation - **_lowerbound_**: desired lower bound - **_upperbound_**: desired upper bound - **_items_**: number of items making the scale - default = 1 An earlier version of _LikertMakeR_ had a function, _lexact()_, which was slow and no more accurate than the latest version of _lfast()_. So, _lexact()_ is now deprecated. #### _lfast()_ example ##### a four-item, five-point Likert scale ```{r lfastExample} nItems <- 4 mean <- 2.5 sd <- 0.75 x1 <- lfast( n = 512, mean = mean, sd = sd, lowerbound = 1, upperbound = 5, items = nItems ) ``` ```{r fig1, fig.height=3, fig.width=5, fig.align='center', echo = FALSE, crop = TRUE, fig.cap="Example: 4-item, 1-5 Likert scale"} ## distribution of x hist(x1, cex.axis = 0.5, cex.main = 0.75, breaks = seq(from = (1 - (1 / 8)), to = (5 + (1 / 8)), by = (1 / 4)), col = "skyblue", xlab = NULL, ylab = NULL, main = paste0("mu=", round(mean(x1), 2), ", sd=", round(sd(x1), 2)) ) ``` ##### an 11-point likelihood-of-purchase scale ###### _lfast()_ ```{r lfastx2} x2 <- lfast(256, 3, 2.5, 0, 10) ``` ```{r fig2, fig.height=3, fig.width=5, fig.align='center', echo = FALSE, crop = TRUE, fig.cap="Example: likelihood-of-purchase scale"} ## generate histogram hist(x2, cex.axis = 0.5, cex.main = 0.75, breaks = seq(from = -0.5, to = 10.5, by = 1), col = "skyblue", xlab = NULL, ylab = NULL, main = paste0("mu=", round(mean(x2), 2), ", sd=", round(sd(x2), 2)) ) ``` ____ ## Correlating rating scales The function, **_lcor()_**, rearranges the values in the columns of a data-set so that they are correlated at a specified level. It does not change the values - it swaps their positions within each column so that univariate statistics do not change, but their correlations with other vectors do. ### _lcor()_ **_lcor()_** systematically selects pairs of values in a column and swaps their places, and checks to see if this swap improves the correlation matrix. If the revised dataframe produces a correlation matrix closer to the target correlation matrix, then the swap is retained. Otherwise, the values are returned to their original places. This process is iterated across each column. To create the desired correlated data, the user must define the following parameters: - **_data_**: a starter data set of rating-scales. Number of columns must match the dimensions of the _target_ correlation matrix. - **_target_**: the target correlation matrix. ### _lcor()_ example Let's generate some data: three 5-point Likert scales, each with five items. ```{r lcorExample} ## generate uncorrelated synthetic data n <- 128 lowerbound <- 1 upperbound <- 5 items <- 5 mydat3 <- data.frame( x1 = lfast(n, 2.5, 0.75, lowerbound, upperbound, items), x2 = lfast(n, 3.0, 1.50, lowerbound, upperbound, items), x3 = lfast(n, 3.5, 1.00, lowerbound, upperbound, items) ) ``` The first six observations from this dataframe are: ```{r mydat3Head, echo = FALSE} head(mydat3, 6) ``` And the first and second moments (to 3 decimal places) are: ```{r mydat3Moments, echo = FALSE} moments <- data.frame( mean = apply(mydat3, 2, mean) |> round(3), sd = apply(mydat3, 2, sd) |> round(3) ) |> t() moments ``` We can see that the data have first and second moments are very close to what is expected. As we should expect, randomly-generated synthetic data have low correlations: ```{r mydat3Cor, echo = FALSE} cor(mydat3) |> round(2) ``` Now, let's define a target correlation matrix: ```{r tgt3} ## describe a target correlation matrix tgt3 <- matrix( c( 1.00, 0.85, 0.75, 0.85, 1.00, 0.65, 0.75, 0.65, 1.00 ), nrow = 3 ) ``` So now we have a dataframe with desired first and second moments, and a target correlation matrix. ```{r new3} ## apply lcor() function new3 <- lcor(data = mydat3, target = tgt3) ``` Values in each column of the new dataframe do not change from the original; the values are rearranged. The first ten observations from this dataframe are: ```{r new3Head, echo = FALSE} head(new3, 10) ``` And the new data frame is correlated close to our desired correlation matrix; here presented to 3 decimal places: ```{r new3Cor, echo = FALSE} cor(new3) |> round(3) ``` ____ ## Generate a correlation matrix from Cronbach's Alpha ### makeCorrAlpha() **_makeCorrAlpha()_**, constructs a random correlation matrix of given dimensions and predefined Cronbach's Alpha. To create the desired correlation matrix, the user must define the following parameters: - **_items_**: or "k" - the number of rows and columns of the desired correlation matrix. - **_alpha_**: the target value for Cronbach's Alpha - **_variance_**: a notional variance coefficient to affect the spread of values in the correlation matrix. Default = '0.5'. A value of '0' produces a matrix where all off-diagonal correlations are equal. Setting 'variance = 1.0' gives a wider range of values. Setting 'variance = 2.0', or above, may be feasible but increases the likelihood of a non-positive-definite matrix. ### makeCorrAlpha() is volatile Random values generated by _makeCorrAlpha()_ are highly volatile. _makeCorrAlpha()_ may not generate a feasible (positive-definite) correlation matrix, especially when * variance is high relative to - desired Alpha, and - desired correlation dimensions _makeCorrAlpha()_ will inform the user if the resulting correlation matrix is positive definite, or not. If the returned correlation matrix is not positive-definite, a feasible solution may be still possible, and often is. The user is encouraged to try again, possibly several times, to find one. #### _makeCorrAlpha()_ examples ##### Four variables, alpha = 0.85, variance = default ```{r cor_matrix_4} ## define parameters items <- 4 alpha <- 0.85 # variance <- 0.5 ## by default ## apply makeCorrAlpha() function set.seed(42) cor_matrix_4 <- makeCorrAlpha(items, alpha) ``` _makeCorrAlpha()_ produced the following correlation matrix (to three decimal places): ```{r cor_matrix_4Print, echo = FALSE} cor_matrix_4 |> round(3) ``` ##### test output with Helper functions ```{r cor_matrix_4Alpha} ## using helper function alpha() alpha(cor_matrix_4) ``` ```{r fig3, fig.height=3, fig.width=5, fig.align='center', echo = TRUE, crop = TRUE} ## using helper function eigenvalues() eigenvalues(cor_matrix_4, 1) ``` #### twelve variables, alpha = 0.90, variance = 1 ```{r cor_matrix_12} ## define parameters items <- 12 alpha <- 0.90 variance <- 1.0 ## apply makeCorrAlpha() function set.seed(42) cor_matrix_12 <- makeCorrAlpha(items = items, alpha = alpha, variance = variance) ``` ###### - _makeCorrAlpha()_ produced the following correlation matrix (to two decimal places): ```{r cor_matrix_12Print, echo = FALSE} cor_matrix_12 |> round(2) ``` ##### test output ```{r fig4, fig.height=3, fig.width=5, fig.align='center', echo = TRUE, crop = TRUE} ## calculate Cronbach's Alpha alpha(cor_matrix_12) ## calculate eigenvalues of the correlation matrix eigenvalues(cor_matrix_12, 1) |> round(3) ``` ____ ## Generate a dataframe of rating scales from a correlation matrix and predefined moments ### makeItems() **_makeItems()_** generates a dataframe of random discrete values from a _scaled Beta distribution_ so the data replicate a rating scale, and are correlated close to a predefined correlation matrix. Generally, means, standard deviations, and correlations are correct to two decimal places. _makeItems()_ is a wrapper function for * _lfast()_, which takes repeated samples selecting a vector that best fits the desired moments, and * _lcor()_, which rearranges values in each column of the dataframe so they closely match the desired correlation matrix. To create the desired dataframe, the user must define the following parameters: - **_n_**: number of observations - **_dfMeans_**: a vector of length 'k' of desired means of each variable - **_dfSds_**: a vector of length 'k' of desired standard deviations of each variable - **_lowerbound_**: a vector of length 'k' of values for the lower bound of each variable (For example, '1' for a 1-5 rating scale) - **_upperbound_**: a vector of length 'k' of values for the upper bound of each variable (For example, '5' for a 1-5 rating scale) - **_cormatrix_**: a target correlation matrix with 'k' rows and 'k' columns. ### _makeItems()_ examples ```{r makeItemsExample} ## define parameters n <- 128 dfMeans <- c(2.5, 3.0, 3.0, 3.5) dfSds <- c(1.0, 1.0, 1.5, 0.75) lowerbound <- rep(1, 4) upperbound <- rep(5, 4) corMat <- matrix( c( 1.00, 0.25, 0.35, 0.45, 0.25, 1.00, 0.70, 0.75, 0.35, 0.70, 1.00, 0.85, 0.45, 0.75, 0.85, 1.00 ), nrow = 4, ncol = 4 ) ## apply makeItems() function df <- makeItems( n = n, means = dfMeans, sds = dfSds, lowerbound = lowerbound, upperbound = upperbound, cormatrix = corMat ) ## test the function head(df) tail(df) ### means should be correct to two decimal places dfmoments <- data.frame( mean = apply(df, 2, mean) |> round(3), sd = apply(df, 2, sd) |> round(3) ) |> t() dfmoments ### correlations should be correct to two decimal places cor(df) |> round(3) ``` ____ ## Generate a dataframe from Cronbach's Alpha and predefined moments This is a two-step process: 1. apply **_makeCorrAlpha()_** to generate a correlation matrix from desired alpha, 2. apply **_makeItems()_** to generate rating-scale items from the correlation matrix and desired moments Required parameters are: - **_k_**: number items/ columns - **_alpha_**: a target Cronbach's Alpha. - **_n_**: number of observations - **_lowerbound_**: a vector of length 'k' of values for the lower bound of each variable - **_upperbound_**: a vector of length 'k' of values for the upper bound of each variable - **_means_**: a vector of length 'k' of desired means of each variable - **_sds_**: a vector of length 'k' of desired standard deviations of each variable ### Step 1: Generate a correlation matrix ```{r genCorrelation} ## define parameters k <- 6 myAlpha <- 0.85 ## generate correlation matrix set.seed(42) myCorr <- makeCorrAlpha(items = k, alpha = myAlpha) ## display correlation matrix myCorr |> round(3) ### checking Cronbach's Alpha alpha(cormatrix = myCorr) ``` ### Step 2: Generate dataframe ```{r gendataframe} ## define parameters n <- 256 myMeans <- c(2.75, 3.00, 3.00, 3.25, 3.50, 3.5) mySds <- c(1.00, 0.75, 1.00, 1.00, 1.00, 1.5) lowerbound <- rep(1, k) upperbound <- rep(5, k) ## Generate Items myItems <- makeItems( n = n, means = myMeans, sds = mySds, lowerbound = lowerbound, upperbound = upperbound, cormatrix = myCorr ) ## resulting data frame head(myItems) tail(myItems) ## means and standard deviations myMoments <- data.frame( means = apply(myItems, 2, mean) |> round(3), sds = apply(myItems, 2, sd) |> round(3) ) |> t() myMoments ## Cronbach's Alpha of data frame alpha(NULL, myItems) ``` #### Summary plots of new data frame ```{r fig5, fig.height=5, fig.width=5, fig.align='center', echo=FALSE, warning=FALSE, crop = TRUE, fig.cap="Summary of dataframe from makeItems() function"} # Correlation panel panel.cor <- function(x, y) { usr <- par("usr") on.exit(par(usr)) par(usr = c(0, 1, 0, 1)) r <- round(cor(x, y), digits = 2) txt <- paste0(r) cex.cor <- 0.8 / strwidth(txt) text(0.5, 0.5, txt, cex = 1.25) } # Customize upper panel upper.panel <- function(x, y) { points(x, y, pch = 19, col = "#0000ff11") } # diagonals panel.hist <- function(x, ...) { usr <- par("usr") on.exit(par(usr)) par(usr = c(usr[1:2], 0, 1.5)) h <- hist(x, plot = FALSE) breaks <- h$breaks nB <- length(breaks) y <- h$counts y <- y / max(y) rect(breaks[-nB], 0, breaks[-1], y, col = "#87ceeb66") } # Create the plots pairs(myItems, lower.panel = panel.cor, upper.panel = upper.panel, diag.panel = panel.hist ) ``` ____ ## Generate a dataframe of rating-scale items from a summated rating scale ### makeItemsScale() - **_makeItemsScale()_** generates a dataframe of rating-scale items from a summated rating scale and desired _Cronbach's Alpha_. To create the desired dataframe, the user must define the following parameters: - **_scale_**: a vector or dataframe of the summated rating scale. Should range from ('lowerbound' * 'items') to ('upperbound' * 'items') - **_lowerbound_**: lower bound of the scale item (example: '1' in a '1' to '5' rating) - **_upperbound_**: upper bound of the scale item (example: '5' in a '1' to '5' rating) - **_items_**: k, or number of columns to generate - **_alpha_**: desired Cronbach's Alpha. Default = '0.8' - **_variance_**: quantile for selecting the combination of items that give summated scores. Must lie between '0' (minimum variance) and '1' (maximum variance). Default = '0.5'. #### _makeItemsScale()_ Example: ##### generate a summated scale ```{r generate_summated_scale} ## define parameters n <- 256 mean <- 3.00 sd <- 0.85 lowerbound <- 1 upperbound <- 5 items <- 4 ## apply lfast() function meanScale <- lfast( n = n, mean = mean, sd = sd, lowerbound = lowerbound, upperbound = upperbound, items = items ) ## sum over all items summatedScale <- meanScale * items ``` ```{r summatedScale_histogram, echo=FALSE, fig.height=3, fig.width=5, fig.align='center', crop = TRUE, fig.cap="Summated scale distribution"} ## Histogram of summated scale hist(summatedScale, cex.axis = 0.5, cex.main = 0.75, breaks = seq( from = ((lowerbound * items) - 0.5), to = ((upperbound * items) + 0.5), by = 1 ), col = "skyblue", xlab = NULL, ylab = NULL, main = paste0( "mu=", round(mean * items, 2), ", sd=", round(sd * items, 2), ", range:", (lowerbound * items), ":", (upperbound * items) ) ) ``` #### create items with _makeItemsScale()_ ```{r makeItemsScale_example_1, fig.height=3, fig.width=5, fig.align='center', crop = TRUE} ## apply makeItemsScale() function newItems_1 <- makeItemsScale( scale = summatedScale, lowerbound = lowerbound, upperbound = upperbound, items = items ) ### First 10 observations and summated scale head(cbind(newItems_1, summatedScale), 10) ### correlation matrix cor(newItems_1) |> round(2) ### default Cronbach's alpha = 0.80 alpha(data = newItems_1) |> round(4) ### calculate eigenvalues and print scree plot eigenvalues(cor(newItems_1), 1) |> round(3) ``` #### _makeItemsScale()_ with same summated values and higher _alpha_ ```{r makeItemsScale_example_2, fig.height=3, fig.width=5, fig.align='center', crop = TRUE} ## apply makeItemsScale() function newItems_2 <- makeItemsScale( scale = summatedScale, lowerbound = lowerbound, upperbound = upperbound, items = items, alpha = 0.9 ) ### First 10 observations and summated scale head(cbind(newItems_2, summatedScale), 10) ### correlation matrix cor(newItems_2) |> round(2) ### requested Cronbach's alpha = 0.90 alpha(data = newItems_2) |> round(4) ### calculate eigenvalues and print scree plot eigenvalues(cor(newItems_2), 1) |> round(3) ``` #### same summated values with lower _alpha_ that may require higher _variance_ ```{r makeItemsScale_example_3, fig.height=3, fig.width=5, fig.align='center', crop = TRUE} ## apply makeItemsScale() function newItems_3 <- makeItemsScale( scale = summatedScale, lowerbound = lowerbound, upperbound = upperbound, items = items, alpha = 0.6, variance = 0.7 ) ### First 10 observations and summated scale head(cbind(newItems_3, summatedScale), 10) ### correlation matrix cor(newItems_3) |> round(2) ### requested Cronbach's alpha = 0.70 alpha(data = newItems_3) |> round(4) ### calculate eigenvalues and print scree plot eigenvalues(cor(newItems_3), 1) |> round(3) ``` ---- ## Create a multidimensional dataframe of correlated scale items ### correlateScales() Correlated rating-scale items generally are summed or averaged to create a measure of an "unobservable", or "latent", construct. _**correlateScales()**_ takes several such dataframes of rating-scale items and rearranges their rows so that the scales are correlated according to a predefined correlation matrix. Univariate statistics for each dataframe of rating-scale items do not change, but their correlations with rating-scale items in other dataframes do. To run _**correlateScales()**_, parameters are: - _**dataframes**_: a list of 'k' dataframes to be rearranged and combined - _**scalecors**_: target correlation matrix - should be a symmetric k*k positive-semi-definite matrix, where 'k' is the number of dataframes As with other functions in _LikertMakeR_, _correlateScales()_ focuses on item and scale moments (mean and standard deviation) rather than on covariance structure. If you wish to simulate data for teaching or experimenting with Structural Equation modelling, then I recommend the _sim.item()_ and _sim.congeneric()_ functions from the [psych package](https://CRAN.R-project.org/package=psych) ### correlateScales() examples #### three attitudes and a behavioural intention ##### create dataframes of Likert-scale items ```{r correlateScales_dataframes, echo = TRUE} n <- 128 lower <- 1 upper <- 5 ### attitude #1 #### generate a correlation matrix cor_1 <- makeCorrAlpha(items = 4, alpha = 0.80) #### specify moments as vectors means_1 <- c(2.5, 2.5, 3.0, 3.5) sds_1 <- c(0.75, 0.85, 0.85, 0.75) #### apply makeItems() function Att_1 <- makeItems( n = n, means = means_1, sds = sds_1, lowerbound = rep(lower, 4), upperbound = rep(upper, 4), cormatrix = cor_1 ) ### attitude #2 #### generate a correlation matrix cor_2 <- makeCorrAlpha(items = 5, alpha = 0.85) #### specify moments as vectors means_2 <- c(2.5, 2.5, 3.0, 3.0, 3.5) sds_2 <- c(0.75, 0.85, 0.75, 0.85, 0.75) #### apply makeItems() function Att_2 <- makeItems( n, means_2, sds_2, rep(lower, 5), rep(upper, 5), cor_2 ) ### attitude #3 #### generate a correlation matrix cor_3 <- makeCorrAlpha(items = 6, alpha = 0.90) #### specify moments as vectors means_3 <- c(2.5, 2.5, 3.0, 3.0, 3.5, 3.5) sds_3 <- c(0.75, 0.85, 0.85, 1.0, 0.75, 0.85) #### apply makeItems() function Att_3 <- makeItems( n, means_3, sds_3, rep(lower, 6), rep(upper, 6), cor_3 ) ### behavioural intention intent <- lfast(n, mean = 4.0, sd = 3, lowerbound = 0, upperbound = 10) |> data.frame() names(intent) <- "int" ``` ###### check properties of item dataframes ```{r dataframe_properties} ## Attitude #1 A1_moments <- data.frame( means = apply(Att_1, 2, mean) |> round(2), sds = apply(Att_1, 2, sd) |> round(2) ) |> t() ### Attitude #1 moments A1_moments ### Attitude #1 correlations cor(Att_1) |> round(2) ### Attitude #1 cronbach's alpha alpha(cor(Att_1)) |> round(3) ## Attitude #2 A2_moments <- data.frame( means = apply(Att_2, 2, mean) |> round(2), sds = apply(Att_2, 2, sd) |> round(2) ) |> t() ### Attitude #2 moments A2_moments ### Attitude #2 correlations cor(Att_2) |> round(2) ### Attitude #2 cronbach's alpha alpha(cor(Att_2)) |> round(3) ## Attitude #3 A3_moments <- data.frame( means = apply(Att_3, 2, mean) |> round(2), sds = apply(Att_3, 2, sd) |> round(2) ) |> t() ### Attitude #3 moments A3_moments ### Attitude #3 correlations cor(Att_3) |> round(2) ### Attitude #2 cronbach's alpha alpha(cor(Att_3)) |> round(3) ## Behavioural Intention intent_moments <- data.frame( mean = apply(intent, 2, mean) |> round(3), sd = apply(intent, 2, sd) |> round(3) ) |> t() ### Intention moments intent_moments ``` ##### correlateScales parameters ```{r correlateScales_parameters} ### target scale correlation matrix scale_cors <- matrix( c( 1.0, 0.7, 0.6, 0.5, 0.7, 1.0, 0.4, 0.3, 0.6, 0.4, 1.0, 0.2, 0.5, 0.3, 0.2, 1.0 ), nrow = 4 ) ### bring dataframes into a list data_frames <- list("A1" = Att_1, "A2" = Att_2, "A3" = Att_3, "Int" = intent) ``` #### apply the correlateScales() function ```{r my_correlated_scales} ### apply correlateScales() function my_correlated_scales <- correlateScales( dataframes = data_frames, scalecors = scale_cors ) ``` #### plot the new correlated scale items ```{r fig6, fig.height=9, fig.width=9, fig.align='center', echo=FALSE, warning=FALSE, crop = TRUE} # Correlation panel panel.cor <- function(x, y) { usr <- par("usr") on.exit(par(usr)) par(usr = c(0, 1, 0, 1)) r <- round(cor(x, y), digits = 2) txt <- paste0(r) cex.cor <- 0.8 / strwidth(txt) text(0.5, 0.5, txt, cex = 1.25) } # Customize upper panel upper.panel <- function(x, y) { points(x, y, pch = 19, col = "#0000ff11") } # diagonals panel.hist <- function(x, ...) { usr <- par("usr") on.exit(par(usr)) par(usr = c(usr[1:2], 0, 1.5)) h <- hist(x, plot = FALSE) breaks <- h$breaks nB <- length(breaks) y <- h$counts y <- y / max(y) rect(breaks[-nB], 0, breaks[-1], y, col = "#0000ff50") } # Create the plots pairs(my_correlated_scales, lower.panel = panel.cor, upper.panel = upper.panel, diag.panel = panel.hist ) ``` ###### Check the properties of our derived dataframe ```{r newdata_check} ## data structure str(my_correlated_scales) ``` ```{r fig7, fig.height=3, fig.width=5, fig.align='center', echo = TRUE, crop = TRUE} ## eigenvalues of dataframe correlations Cor_Correlated_Scales <- cor(my_correlated_scales) eigenvalues(cormatrix = Cor_Correlated_Scales, scree = TRUE) |> round(2) ``` ```{r fig7a, fig.height=3, fig.width=5, fig.align='center', echo = TRUE, crop = TRUE} #### Eigenvalues of predictor variable items only Cor_Attitude_items <- cor(my_correlated_scales[, -16]) eigenvalues(cormatrix = Cor_Attitude_items, scree = TRUE) |> round(2) ``` ____ ## Helper functions _likertMakeR()_ includes two additional functions that may be of help when examining parameters and output. * **_alpha()_** calculates Cronbach's Alpha from a given correlation matrix or a given dataframe * **_eigenvalues()_** calculates eigenvalues of a correlation matrix, a report on whether the correlation matrix is positive definite, and produces an optional scree plot. ### alpha() _alpha()_ accepts, as input, either a correlation matrix or a dataframe. If both are submitted, then the correlation matrix is used by default, with a message to that effect. ### alpha() examples ```{r alphaExample} ## define parameters df <- data.frame( V1 = c(4, 2, 4, 3, 2, 2, 2, 1), V2 = c(3, 1, 3, 4, 4, 3, 2, 3), V3 = c(4, 1, 3, 5, 4, 1, 4, 2), V4 = c(4, 3, 4, 5, 3, 3, 3, 3) ) corMat <- matrix( c( 1.00, 0.35, 0.45, 0.75, 0.35, 1.00, 0.65, 0.55, 0.45, 0.65, 1.00, 0.65, 0.75, 0.55, 0.65, 1.00 ), nrow = 4, ncol = 4 ) ## apply function examples alpha(cormatrix = corMat) alpha(data = df) alpha(NULL, df) alpha(corMat, df) ``` ### eigenvalues() _eigenvalues()_ calculates eigenvalues of a correlation matrix, reports on whether the matrix is positive-definite, and optionally produces a scree plot. ### eigenvalues() examples ```{r eigenExample} ## define parameters correlationMatrix <- matrix( c( 1.00, 0.25, 0.35, 0.45, 0.25, 1.00, 0.70, 0.75, 0.35, 0.70, 1.00, 0.85, 0.45, 0.75, 0.85, 1.00 ), nrow = 4, ncol = 4 ) ## apply function evals <- eigenvalues(cormatrix = correlationMatrix) print(evals) ``` ##### eigenvalues() function with optional scree plot ```{r fig8, fig.height=3, fig.width=5, fig.align='center', echo = TRUE, crop = TRUE} evals <- eigenvalues(correlationMatrix, 1) print(evals) ``` ____ # Alternative methods & packages _LikertMakeR_ is intended for synthesising & correlating rating-scale data with means, standard deviations, and correlations as close as possible to predefined parameters. If you don't need your data to be close to exact, then other options may be faster or more flexible. Different approaches include: - sampling from a _truncated normal_ distribution - sampling with a predetermined probability distribution - marginal model specification ### sampling from a _truncated normal_ distribution Data are sampled from a normal distribution, and then truncated to suit the rating-scale boundaries, and rounded to set discrete values as we see in rating scales. See [Heinz (2021)](https://glaswasser.github.io/simulating-correlated-likert-scale-data/) for an excellent and short example using the following packages: - [truncnorm](https://cran.r-project.org/package=truncnorm) - [faux](https://cran.r-project.org/package=faux) - See also the _rLikert()_ function from the excellent [latent2likert](https://github.com/markolalovic/latent2likert) package, [Lalovic (2024)](https://latent2likert.lalovic.io/), for an approach using optimal discretization and skew-normal distribution. _latent2likert()_ converts continuous latent variables into ordinal categories to generate Likert scale item responses. ### sampling with a predetermined probability distribution - the following code will generate a vector of values with approximately the given probabilities. Good for simulating a single item. ```{r, eval = FALSE} n <- 128 sample(1:5, n, replace = TRUE, prob = c(0.1, 0.2, 0.4, 0.2, 0.1) ) ``` ### marginal model specification Marginal model specification extends the idea of a predefined probability distribution to multivariate and correlated dataframes. - [SimCorrMix: Simulation of Correlated Data with Multiple Variable Types Including Continuous and Count Mixture Distributions](https://CRAN.R-project.org/package=SimCorrMix) on CRAN. - [SimMultiCorrData: Simulation of Correlated Data with Multiple Variable Types]( https://CRAN.R-project.org/package=SimMultiCorrData) on CRAN. - [lsasim: Functions to Facilitate the Simulation of Large Scale Assessment Data](https://CRAN.R-project.org/package=lsasim) on CRAN. See [Matta et al. (2018)](https://doi.org/10.1186/s40536-018-0068-8) - [GenOrd:Simulation of Discrete Random Variables with Given Correlation Matrix and Marginal Distributions](https://CRAN.R-project.org/package=GenOrd) on CRAN. - [SimCorMultRes: Simulates Correlated Multinomial Responses](https://cran.r-project.org/package=SimCorMultRes) on CRAN. See [Touloumis (2016)](https://journal.r-project.org/archive/2016/RJ-2016-034/index.html) - [covsim: VITA, IG and PLSIM Simulation for Given Covariance and Marginals](https://cran.r-project.org/package=covsim) on CRAN. See [Grønneberg et al. (2022)](https://www.jstatsoft.org/article/view/v102i03) ### Factor Models: Classical Test Theory (CTT) The [psych package](https://CRAN.R-project.org/package=psych) has several excellent functions for simulating rating-scale data based on factor loadings. These focus on factor and item correlations rather than item moments. Highly recommended. - [**_psych::sim.item_** Generate simulated data structures for circumplex, spherical, or simple structure](https://CRAN.R-project.org/package=psych) - [**_psych::sim.congeneric_** Simulate a congeneric data set with or without minor factors](https://CRAN.R-project.org/package=psych) See [Revelle (in prep)](https://personality-project.org/r/book/) Also: [**_simsem_**](https://CRAN.R-project.org/package=simsem) has many functions for simulating and testing data for application in Structural Equation modelling. See examples at [https://simsem.org/](https://simsem.org/) ### General data simulation [**_simpr_**](https://CRAN.R-project.org/package=simpr) provides a general, simple, and tidyverse-friendly framework for generating simulated data, fitting models on simulations, and tidying model results. ____ # References Grønneberg, S., Foldnes, N., & Marcoulides, K. M. (2022). covsim: An R Package for Simulating Non-Normal Data for Structural Equation Models Using Copulas. _Journal of Statistical Software_, 102(1), 1–45. Heinz, A. (2021), Simulating Correlated Likert-Scale Data In R: 3 Simple Steps (blog post) Lalovic M (2024). latent2likert: Converting Latent Variables into Likert Scale Responses. R package version 1.2.2, . Matta, T.H., Rutkowski, L., Rutkowski, D. & Liaw, Y.L. (2018), lsasim: an R package for simulating large-scale assessment data. _Large-scale Assessments in Education_ 6, 15. Pornprasertmanit, S., Miller, P., & Schoemann, A. (2021). simsem: R package for simulated structural equation modeling Revelle, W. (in prep) _An introduction to psychometric theory with applications in R_. To be published by Springer. (working draft available at ) Touloumis, A. (2016), Simulating Correlated Binary and Multinomial Responses under Marginal Model Specification: The SimCorMultRes Package, _The R Journal_ 8:2, 79-91.